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SUMMARY

We report on our recent efforts on the formulation and the evaluation of a domain decomposition
algorithm for the parallel solution of two-dimensional compressible inviscid flows. The starting point is
a flow solver for the Euler equations, which is based on a mixed finite element/finite volume formulation
on unstructured triangular meshes. Time integration of the resulting semi-discrete equations is obtained
using a linearized backward Euler implicit scheme. As a result, each pseudo-time step requires the
solution of a sparse linear system for the flow variables. In this study, a non-overlapping domain
decomposition algorithm is used for advancing the solution at each implicit time step. First, we formulate
an additive Schwarz algorithm using appropriate matching conditions at the subdomain interfaces. In
accordance with the hyperbolic nature of the Euler equations, these transmission conditions are Dirichlet
conditions for the characteristic variables corresponding to incoming waves. Then, we introduce interface
operators that allow us to express the domain decomposition algorithm as a Richardson-type iteration on
the interface unknowns. Algebraically speaking, the Schwarz algorithm is equivalent to a Jacobi iteration
applied to a linear system whose matrix has a block structure. A substructuring technique can be applied
to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In our approach,
the interface unknowns are numerical (normal) fluxes. Copyright © 2001 John Wiley & Sons, Ltd.

KEY WORDS: domain decomposition method; Euler equations; finite elements; finite volumes; multigrid
algorithm; parallel computing; triangular meshes

1. INTRODUCTION

When solving a physical problem modelled by a partial differential equation (PDE), one is
generally confronted by a discretization step followed by a sequence of linear system solves.
The size or the ill-conditioning of the latter often makes a global or a direct solution approach
rather inappropriate. With the advent of parallel computers, domain decomposition algorithms
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have enjoyed an increasing popularity among the scientific community because they define a
good framework to derive efficient solvers for the resulting linear systems using the mathemat-
ical properties of the initial PDE [1]. As a matter of fact, since the early 1980s, efficient and
scalable domain decomposition algorithms have been developed for the solution of computa-
tional structural mechanics problems (i.e. for the solution of elliptic PDEs); however, their
application to computational fluid dynamics problems (i.e. to the solution of hyperbolic or
mixed hyperbolic/parabolic PDEs) has been less remarkable.

Domain decomposition algorithms allow us to solve problems of large size by decomposing
them into smaller ones which can be treated by several computers with low memory capacity.
In the simplest case, the solution of a subproblem provides the definition of the boundary
conditions for the next subproblem when proceeding with a sequential treatement of the
different subproblems. The Schwarz algorithm, which illustrates this approach, relies on a
spatial decomposition of the initial domain in o�erlapping subdomains. Its original form is
often called multiplicati�e since the corresponding iterative operator can be expressed as the
product of some local operators related to the local solves. It is obvious that this kind of
algorithm is not well suited to parallel architectures. Lately, additi�e variants have been
devised, which are characterized by a simultaneous treatment of the subproblems and therefore
efficiently exploit parallel computing architectures. To summarize, domain decomposition
methods can be classified according to two criteria: o�erlapping versus non-o�erlapping
methods according to the spatial decomposition of the global domain, multiplicati�e versus
additi�e algorithms according to the interdependence of the local solutions at each iteration.
The non-overlapping domain decomposition methods can be of the Schwarz or substructuring
(Schur complement or interface system) types, the latest being related to block Gaussian
elimination techniques (each block corresponding to a different subdomain). When solving an
interface problem, one deals with an operator acting on interface variables, whose discretiza-
tion is the Schur complement of the global operator [2,3].

Domain decomposition methods were first developed for elliptic second-order problems,
taking advantage of the strong regularity of their solutions as well as of the symmetry of the
operators involved (or the dominance of the symmetric part of the operators) [4–6]. The
situation is less clear for hyperbolic or mixed hyperbolic parabolic models of compressible fluid
mechanics. One has to deal with first-order PDEs characterized by non-symmetric operators,
with possible singular solutions. When the symmetric part is dominant one can still apply the
algorithms built for the symmetric systems with a few modifications. If not, for example, when
convection is dominant in the convection–diffusion case, different approaches exist using
Dirichlet and/or Neumann interface conditions as in Reference [7], or using a Robin transmis-
sion condition and an iteration by subdomain algorithm as in References [8–10].

In order to accelerate the convergence of non-overlapping domain decomposition algorithms
for the solution of convection–diffusion problems, one can basically consider two directions:
the construction of an appropriate preconditioning method for the resulting interface problem
or the modification of the interface conditions involved in a Schwarz-type algorithm. For
instance, in Reference [11] an optimal Robin–Robin preconditioner is built from local
problems with Robin-type conditions at the interface. The second acceleration strategy relies
on the notion of absorbing boundary conditions. The absorbing boundary conditions (or
artificial boundary conditions) have been introduced for the first time by Engquist and Majda
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[12] for the solution of PDEs on an unbounded domain. They are imposed on an artificial
boundary such that the solution on the truncated domain is the restriction of the whole
solution. Their application to the convection–diffusion or Navier–Stokes equations has been
studied by Halpern and Schatzmann in References [13–15]. Recently, Nataf [16] has discov-
ered a similar situation in the framework of domain decomposition methods. Nataf et al. [17]
have shown that in this context, the use of the absorbing boundary conditions leads to an
optimal convergence of a Schwarz-type algorithm. However, these type of boundary conditions
involve the use of non-local operators which need to be approximated by partial differential
operators. This has been done in the case of a convection–diffusion equation by Japhet [18]
using, as an approximation criterion, the minimization of the convergence rate of a Schwarz-
type algorithm whose transmission conditions have been optimized.

The objective of the present work is to solve the Euler equations for compressible flows by
a non-overlapping domain decomposition method, and more precisely, by a substructuring
method. The formulation of a Schwarz-type algorithm for the Euler equations can be found in
References [19,20]. In Reference [21] one can find an interface formulation for scalar transport
equations by defining a Steklov–Poincaré-type operator. Clerc [19] considered different classes
of transmission conditions applied to the solution of linearized and symmetrized hyperbolic
systems, such as the Cauchy–Riemann equations. Here, we base our formulation on classical
transmission conditions that are derived naturally from a weak formulation of the problem.
The starting point is a flow solver for the Euler equations, which is based on a mixed finite
element/finite volume formulation on unstructured triangular meshes for the spatial discretiza-
tion. Time integration of the resulting semi-discrete equations is obtained using a linearized
backward Euler implicit scheme [22]. As a result, each pseudo-time step requires the solution
of a sparse linear system for the flow variables. In this work, a non-overlapping domain
decomposition algorithm is used for advancing the solution at each implicit time step. First, we
formulate an additive Schwarz algorithm using appropriate matching conditions at the
subdomain interfaces. In accordance with the hyperbolic nature of the Euler equations, these
transmission conditions are Dirichlet conditions for the characteristic variables corresponding
to incoming waves [20]. Then, we introduce interface operators that allow us to express the
domain decomposition algorithm as a Richardson-type iteration on the interface unknowns.
Algebraically speaking, the Schwarz algorithm is equivalent to a Jacobi iteration applied to a
linear system whose matrix has a block structure. A substructuring technique can be applied
to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In our
approach, the interface unknowns are numerical (normal) fluxes.

The remaining part of the paper is organized as follows. In Section 2, the Schwarz algorithm
and the substructuring technique are introduced in the continuous case for a general linear
hyperbolic system. Section 3 describes the characteristics of the starting point mixed finite
element/finite volume flow solver for the Euler equations. The proposed domain decomposi-
tion approach is then adapted to the discrete case in Section 4. For steady flow calculations,
the linear system resulting from the implicit scheme is generally solved approximately (for
example, in the original solver, approximate solutions are obtained using relaxation methods
such as the Jacobi or Gauss–Seidel methods). Here, we have adopted the same approach for
the local solves induced by the domain decomposition algorithm. In particular, we do not
perform direct solution of local problems. In this paper, this strategy is only justified through
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numerical experiments as we compare the convergence of the proposed domain decomposition
algorithm for completely converged and approximate solutions of the local problems. In order
to improve the overall efficiency of the domain decomposition flow solver, the iterative
solution of local linear systems based on Jacobi or Gauss–Seidel relaxation methods is
accelerated by a linear multigrid strategy by volume agglomeration [23]. This is described in
Section 5. In Section 6, the resulting domain decomposition flow solver is evaluated through
numerical experiments that are performed on a cluster of PCs interconnected via a 100 Mbit/s
FastEthernet switch. Finally, conclusions and future works are presented in Section 7.

2. DOMAIN DECOMPOSITION FOR HYPERBOLIC SYSTEMS

In this section we outline the basic principles for the formulation of a non-overlapping domain
decompositon algorithm for hyperbolic systems of PDEs. The proposed framework is greatly
inspired from Quarteroni and Valli [3], Nataf [16], Gastaldi et al. [9], Quarteroni and Stolcis
[20] and Gastaldi and Gastaldi [21]. We also refer to Smith et al. [1] and Quarteroni and Valli
[2] for a detailed discussion of domain decomposition methods. Most of the discussion here is
undertaken in the context of a general linear hyperbolic system. Then, in the next section we
naturally extend the proposed ideas to the solution of the Euler equations for compressible
flows.

2.1. Hyperbolic systems and boundary conditions

Here, we are interested in the numerical solution of a system of conservation laws of the form

�tW+ �
d

i=1

�xi
Fi(W)=0, W�Rp (1)

where d denotes the space dimension and p the dimension of the system. The flux functions Fi

are assumed differentiable with respect to the state vector W=W(x, t). In the general case, the
flux functions are non-linear functions of W. However, if W is assumed regular, system (1) can
be written in quasi-linear form

�tW+ �
d

i=1

�Fi

�W
(W)�xi

W=0 or �tW+ �
d

i=1

Ai(W)�xi
W=0 (2)

The Ai(W)= (�Fi/�W)W are the Jacobian matrices of the flux functions Fi(W) with respect
to W. System (1) is said to be hyperbolic if, for any unitary real vector n�Rd, matrix
�i=1

d Ai(W)ni is diagonalizable with real eingenvalues. We are particularly interested in the
situation where system (1) is integrated in time using a backward Euler implicit scheme
involving a linearization of the flux functions. In that case we have

�W
�t

+ �
d

i=1

�xi

��Fi

�W
(W n)�W

n
= −div(F(W n)) (3)
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where �W=W(x, tn+1)−W(x, tn)=W n+1−W n. When �W is assumed regular, we can write
the non-conservative form of system (3)

� 1
�t

Id+ �
d

i=1

�xi

��Fi

�W
(W n)

nn
�W+ �

d

i=1

��Fi

�W
(W n)

n
�xi

�W= −div(F(W n)) (4)

System (4) can be symmetrized through the multiplication of an operator � (see for example
Barth [24]) which, for hyperbolic systems admitting an entropy function, is given by the
Hessian matrix of this entropy. This operation results in the following first-order system:

A0�W+ �
d

i=1

Ai�xi
�W= f (5)

with

�
�
�
�
�
�
�

A0=�
� 1

�t
Id+ �

d

i=1

�xi

��Fi

�W
(W n)

nn
Ai=�

��Fi

�W
(W n)

n
f= −� div(F(W n))

(6)

Now, let n= (n1, . . . , np) denote the outward normal vector to ��; we define AnW as the
normal trace of W on ��, with An=�i=1

d Aini. When dealing with boundary conditions, it is
well known that one cannot impose all the components of W on the boundary ��. Instead, the
direction of propagation of the information has to be taken into account in order to obtain a
well-posed initial and boundary value problem (IBVP) for system (5). More precisely, the
number and type of boundary conditions that must be imposed on �� are deduced from the
expression of system (5) in terms of characteristic variables and is related to information
entering the domain �. A more rigourous discussion of boundary conditions treatment for
hyperbolic systems from gas dynamics, in terms of characteristic variables, is, for example,
given in Reference [25] (see also Quarteroni and Valli [2] for a discussion in the context of
domain decomposition algorithms). The operator An can be decomposed into positive and
negative parts, i.e. An=An

+ +An
−. Using the diagonalization of An=T�nT−1 we have

�
�
�
�
�

An
� =T�n

�T−1

�n
� =diag(� i

�)1� i�p with � i
� =

1
2

(�i� ��i �)
and with An

+W=An
−W

In order to obtain a well-posed IBVP, we have to impose boundary conditions of the form

An
−W=An

−g (7)
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where An
− is used to select the information entering the domain �.

Then, a well-known result is that the problem

�
�
�
�
�

LW=A0W+ �
d

i=1

Ai�xi
W= f, in �

An
−W=An

−g, on ��
(8)

with f�L2(�)p and g�LA
2 (��), has a unique solution W�H� (see, for example, Reference [19])

with

H� =
�

W�L2(�)p such that �
d

i=1

Ai�xi
W�L2(�)p and W ����LA

1/2(��)
�

with LA
1/2(��)=

�
W such that

�
��

�An �W ·W d���
�

This result is used in the next section to formulate a non-overlapping domain decomposition
algorithm for the solution of (8).

2.2. Domain decomposition and interface conditions

The domain decomposition approach for solving system (8) consists in defining well-posed
subproblems so that a local solution on a given subdomain �i is the restriction of the global
solution on � to �i. The subproblems will inherit the physical boundary conditions of the
global problem for the part of ��i that intersects ��; in addition, appropriate interface
conditions have to be added to the definition of the subproblems for the part of ��i that is
common to neighbouring subdomains. We shall introduce a non-overlapping domain decom-
position algorithm for the following boundary value problem:

LW�A0W+ �
d

k=1

Ak�xk
W= f in �+Boundary conditions on �� (9)

Let �= � i=1
N �i be a stripwise (for simplicity of presentation) decomposition of � and Wi

the solution of the local problem

�
�
�
�
�

LWi= f ��i
= fi

+Boundary conditions on �����i

+Interface conditions on ��i���j

(10)

Let ni be the outward normal to ��i. The local solution Wi is prolongated by zero on �/�i ;
then a necessary and sufficient condition to insure that �i=1

N Wi is the solution of the global
problem (9) is that on �=��i���j the following conditions are verified:
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Ani

−Wi+Anj

+Wj=0 and Ani

+Wi+Anj

−Wj=0 (11)

This result can be deduced from the variational formulation of problem (9). For simplicity,
we consider the two-subdomain case �=�1��2. Let n�� denote the outward normal on ��
and n=n1= −n2 the outward normal on � (directed from �1 to �2), and let W=W1+W2

and f= f1+ f2. We introduce variational formulations of (9)–(10) which are based on the
following space of test functions:

V=
�

X�L2(�)p such that �
d

i=1

AiX�H(div, �)p, AnX�LA
1/2(�)

�
and we note

L�X�A0
TX− �

d

k=1

�xk
(AkX)

On one hand, we integrate by parts on the global domain � and, on the other hand, we
integrate by parts on each subdomain �1 and �2��

�
[LW ]X d�=

��
�

[L�X ]W d�+
�

��
(An� �

W)X d�

=
��

�1

[L�X ]W1 d�+
�

��1���
(An� �

W1)X d�+
��

�2

[L�X ]W2 d�+
�

��2���
(An� �

W2)X d�

=
��

�1

[LW1]X d�−
�

�
(An 1

W1)X d�+
��

�2

[LW2]X d�−
�

�
(An 2

W2)X d�

=
��

�1

[LW1]X d�+
��

�2

[LW1]X d�+
�

�
[AnW2−AnW1]X d�

If W1 and W2 are the (local) solutions of (10) then we must have

�
�

[AnW1−AnW2]X d�=0 �X�V

Therefore, a necessary and sufficient condition to insure that W1+W2 is the (global)
solution of (9) is

AnW1=AnW2 on � (12)

Since An is non-singular, then (12) implies that W1=W2 on �, therefore

(T�n
�T−1)W1= (T�n

�T−1)W2 on � (13)
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which yields

An
−W1=An

−W2 and An
+W1=An

+W2 (14)

Conversely, since An=An
+ +An

−, conditions (14) imply (12), which concludes the proof.

2.3. A non-o�erlapping additi�e Schwarz algorithm

For simplicity of presentation, we assume that the domain � is rectangular, �= [xa, xb ]×
[ya, yb ], and we consider the case of a non-overlapping decomposition in vertical strips, where
the subdomains are defined by �i= ]�i−1, �i [× ]ya, yb [, 2� i�N−1, �1= ]xa, �1[× ]ya, yb [,
�N= ]�N−1, xb [× ]ya, yb [ (see Figure 1). So the outward normal vectors at the interfaces for
the subdomain �i are ni,l= (−1, 0) and ni,r= (1, 0). Consequently, Ani,l

− = −Ani−1,r

+ = −A+

and Ani−1,r

− =A−. We define a Schwarz-type algorithm where the interface transmission
conditions are of the form (11); however, according to (7) and (8), we define these interface
conditions by selecting the information entering each subdomain. Let Wi

(0) denote the initial
appoximation of the solution in subdomain �i, then the approximation at the (k+1)th
iteration (where k defines the iteration of the Schwarz algorithm) is the solution of the problem

�
�
�
�
�

LWi
(k+1)= f in �i

A+Wi
(k+1)=A+W (k) on �i,l

A−Wi
(k+1)=A−Wi+1

(k) on �i,r

An
−Wi

(k+1)=An
−g on �����i

(15)

with the convention that �i,l (respectively �i,r) is the straight line x=�i−1 (respectively x=�i).
Moreover, we have that Wi

(0)=Wi
n and Wi

n+1=Wi
(K), K being the number of iterations of the

above algorithm (n denotes the time step). Clearly, (15) defines an additive Schwarz-type
algorithm even though its formulation is somewhat unconventional as it is based on a

Figure 1. Definition of a vertical strips decomposition.
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non-overlapping partitioning of the domain �. Such algorithms have been extensively stud-
ied by Nataf [16] and Nataf et al. [17] for convection–diffusion problems. In particular,
these authors have considered the use of high-order optimal interface conditions, inspired
from the concept of absorbing boundary conditions for unbounded domains [12], for im-
proving the convergence of the Schwarz algorithm.

2.4. Substructuring for the definition of an interface problem

In this section we reformulate the previous additive Schwarz algorithm as the iterative
solution of an interface system stated in terms of normal fluxes at subdomain interfaces.
Adopting the formalism used in Reference [17], we introduce interface operators for each
subdomain that take as argument the incoming fluxes at the two interfaces and return
outgoing fluxes

Si: LA
1/2(�i,l)p×LA

1/2(�i,r)p×L2(�i)p×L2(�i)p	LA
−1/2(�i,l)p×LA

−1/2(�i,r)p

such that

Si: (�i,l, �i,r, f, g)	 (A−Wi ��i,l
, A+Wi ��i,r

) (16)

for 2� i�N−1, and

S1: LA
1/2(�1,r)p×L2(�i)p×L2(�i)p	LA

−1/2(�1,r)p

SN: LA
1/2(�N,l)p×L2(�i)p×L2(�i)p	LA

−1/2(�N,l)p

with

�S1: (�1,r, f, g)	A+W1��1,r

SN: (�N,l, f, g)	A−WN ��N,l

for i=1 and i=N. In the above expressions, LA
−1/2(�) denotes the dual space of LA

1/2(�). In
each case Wi is the solution of the boundary value problem

�
�
�
�
�

LWi= f in �i

A+Wi=�i,l on �i,l

A−Wi=�i,r on �i,r

An
−Wi=An

−g on �����i

(17)

The interface operators defined previously are linear and the dependence on their argu-
ments is done via the expressions
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�A−Wi ��i,l
=Si(�i,r, 0, 0, 0)��i,l

+Si(0, �i,l, 0, 0)��i,l
+Si(0, 0, f, g)��i,l

A+Wi ��i
=Si(�i,r, 0, 0, 0)��i,r

+Si(0, �i,l, 0, 0)��i,r
+Si(0, 0, f, g)��i,r

In order to simplify the formalism and to emphasize the contribution of each argument, we
define the following operators:

�Srr
i , Srl

i : LA
1/2(�i,l)p	LA

−1/2(�i,l)p

Slr
i , Sll

i : LA
1/2(�i,r)p	LA

−1/2(�i,r)p

such that

�
�
�
�
�

Srr
i (�i,r)=Si(�i,r, 0, 0, 0)��i,l

Srl
i (�i,l)=Si(0, �i,l, 0, 0)��i,l

S lr
i (�i,r)=Si(�i,r, 0, 0, 0)��i,r

Srl
i (�i,l)=Si(0, �i,l, 0, 0)��i,r

Within this formalism we can now reformulate symbolically the Schwarz-type algorithm in
terms of the fluxes �i,l(r) defined above

�(k+1)=S(�(k))+G (18)

where

�= (�1,r, . . . , �N−1,r, �2,l, . . . , �N,l)T

S=

�
�
�
�
�
�
�
�
�
�
�
�
�

0 Srr
2 ··· Srl

2 ··· 0

0 0 Srr
3 ··· Srl

3 0

� �
0 0 ··· 0 ··· SN

S1 0 ··· 0 ··· 0

0 Slr
2 ··· Sll

2 ··· 0

� �
0 ··· Slr

N−1 ··· Sll
N−1 0

	
�
�
�
�
�
�
�
�
�
�
�
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G=

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

S1(0, f, g)��1,r

S2(0, 0, f, g)��2,r

�

SN−1(0, 0, f, g)��N−1,r

S2(0, 0, f, g)��2,l

�

SN−2(0, 0, f, g)��N−2,l

SN−1(0, f, g)��N−1,l

SN(0, f, g)��N,l

	
�
�
�
�
�
�
�
�
�
�
�
�
�



To summarize, we have shown that the Schwarz algorithm defined by (15) can be interpreted
as a relaxation method applied to the system (I−S)(�)=G, which is a Jacobi iteration
applied to the interface system (18). As usual, we can accelerate the solution of this problem
by applying a Krylov-type method, such as GMRES [26].

3. NUMERICAL SOLUTION OF THE EULER EQUATIONS

In this section we describe the characteristics of the compressible flow solver that is used as a
starting point for our study. While doing so, we emphasize the aspects of particular interest to
the domain decomposition approach introduced in Section 2, i.e. the upwind finite volume
discretization of the convective fluxes and the linearized implicit time integration strategy.

3.1. Mathematical model

Let �
R2 be the computational domain and � its boundary. � is written as the union of a
solid wall �w and a far-field boundary ��: �=�w���. Let n� denote the unitary normal at
any point of �. The conservative form of the Euler equations is given by

�W
�t

+�a ·F(W)=0, W= (�, �Ub , E)T, �a =� �

�x
,

�

�y
	T

(19)

where W=W(x� , t); x� and t respectively denote the spatial and temporal variables while
F(W)= (F1(W), F2(W))T is the conservative flux whose components are given by

F1(W)=

�
�
�
�
�

�u
�u2+p

�u�

u(E+p)

�
�
�
�
�

, F2(W)=

�
�
�
�
�

��

�u�

��2+p
�(E+p)

�
�
�
�
�
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In the above expressions, � is the density, Ub = (u, �)T is the velocity vector, E is the total
energy per unit of volume and p is the pressure. The pressure is deduced from the other
variables using the state equation for a perfect gas

p= (�−1)
�

E−
1
2

�
Ub 
2	
where � is the ratio of specific heats (�=1.4 for air).

3.2. Discretization is space

The flow domain � is discretized by a triangulation Th, where h is the maximal length of the
edges of Th. A vertex of Th is denoted by si and the set of neighbouring vertices of si by N(i ).
We associate with each vertex si a control surface (or cell) denoted by Ci, which is constructed
as the union of local contributions from the set of triangles sharing si. The contribution of a
given triangle is obtained by joining its barycenter G to the midpoints I of the edges incident
to si (see Figure 2). The boundary of Ci is denoted by �Ci and the unitary normal vector
exterior to �Ci by �� i= (�ix, �iy). The union of all these cells constitutes a discretization of �
often qualified as dual to Th.

The spatial discretization method adopted here combines the following elements:


 a finite volume formulation together with upwind schemes for the discretization of the
convective fluxes;


 extension to second-order accuracy is obtained by using the Monotonic Upstream Schemes
for Conservation Laws (MUSCL) introduced by van Leer [27] and extended to unstruc-
tured triangular meshes by Fezoui and Stoufflet [22].

Integrating (19) over Ci and integrating by parts results in

��
Ci

�W
�t

dx� = − �
j�N(i)

�
�Cij

F(W) ·�� i d� �1�

−
�

�Ci��w

F(W) ·n� i d�−
�

�Ci���

F(W) ·n� i d� �2� (20)

Figure 2. A control surface on a triangular mesh.
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where �Cij=�Ci��Cj. A first-order finite volume approximation of term �1� writes as

�1�=Wi
n+1−Wi

n+�t �
j�N(i)

�F(Wi
n, Wj

n, �� ij) (21)

where �F denotes a numerical flux function such that

�F(Wi, Wj, �� ij)�
�

�Cij

F(W) ·�� i d�, �� ij=
�

�Cij

�� i d� (22)

The numerical flux (22) yields a conservative scheme if for any edge [si, sj ], the following
condition is verified:

�F(Wi, Wj, �� ij)= −�F(Wj, Wi, �� ji)

Upwinding is introduced in the calculation of (21) by using the approximate Riemann solver
of Roe [28], which gives

�F(Wi, Wj, �� ij)=
F(Wi)+F(Wj)

2
·�� ij− �AR(Wi, Wj, �� ij)�

(Wj−Wi)
2

(23)

where

AR(Wi, Wj, �� ij)=
��F

�W
(Wi, Wj, �� ij) ·�� 	

R

is the so-called matrix of Roe that verifies the following property:

AR(Wi, Wj, �� ij)(Wj−Wi)=F(Wj, �� ij)−F(Wi, �� ij)

with F(W, �� ij)=F(W) ·�� ij. The numerical flux (23) can thus be reformulated as

�F(Wi, Wj, �� ij)=F(Wj, �� ij)−AR,ij
+ �Wij or as

�F(Wi, Wj, �� ij)=F(Wi, �� ij)+AR,ij
− �Wij

where �Wij=Wj−Wi. In practice the matrix AR(Wi, Wj, �� ij) is computed as A�� ij
(W� ), where W�

denotes the mean value of Roe [28]. In the general case, the diagonalization of the Jacobian
matrix A is given by

A(W)=T(W)�(W)T−1(W)

with

�(W)=diag(Ub ·�� −c, Ub ·�� , Ub ·�� , Ub ·�� +c)
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where c=
�(p/�) denotes the speed of sound and T(W) denotes the matrix whose columns
are the associated left eigenvectors. The numerical calculation of the convective flux using
Equation (23) is first-order accurate in space. The extension to second-order accuracy relies on
the MUSCL technique proposed by van Leer [27] and adapted to triangular meshes by Fezoui
and Dervieux [29].

3.3. Boundary conditions

Term �2� in Equation (20) is associated with the boundary conditions of the problem. These
are now taken into account in the weak formulation. The following situations are considered:

– Solid wall. We impose on �w the slip condition Ub ·n� =0. This condition is introduced in the
corresponding term of Equation (20), which results in

�
�Ci��w

F(W) ·n� i d�=pi ��n� ��(0, ñix, ñiy, 0)T (24)

– Far-field boundary. On ��, we make use of a uniform flow state vector, i.e. we assume that
the flow at infinity is uniform (this assumption is valid for external flows, such as those
considered in the results section)

��=1, Ub �= (u�, ��)T with ��Ub ���=1, p�=
1

�M�
2 (25)

where M� is the far-field Mach number. Here, an upwind–downwind flux decomposition is
used between the external information (W�) and the state vector Wi associated with a
vertex si���. More precisely, the corresponding boundary integral of term �2� is evaluated
through a non-reflexive version of the Steger and Warming flux decomposition [30]

�
�Ci���

F(W) ·n� i d�=A+(Wi, n� i�) ·Wi+A−(Wi, n� i�) ·W� (26)

3.4. Time integration

Assuming W(x� , t) is constant on each cell Ci (in other words a mass lumping technique is
applied to the temporal term in Equation (20)), we obtain the following set of semi-discrete
equations:

area(Ci)
dWi

n

dt
+�(Wi

n)=0, i=1, . . . , NV (27)

where Wi
n=W(x� i, tn), tn=n�tn and
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�(Wi
n)= �

j�N(i)

�F(Wij, Wji, �� ij)+
�

�Ci��
F(W) ·n� i d� (28)

Explicit time integration procedures for the time integration of Equation (27) are subject to
a stability condition expressed in terms of a Courant–Friedrichs–Lewy (CFL) number. An
efficient time advancing strategy can be obtained by means of an implicit linearized formula-
tion, such as the one described in Fezoui and Stoufflet [22] and briefly outlined here. First, the
implicit variant of Equation (27) writes as

area(Ci)
�tn �Wi

n+1+�(Wi
n+1)=0, i=1, . . . , NV (29)

where �Wi
n+1=Wi

n+1−Wi
n. Then, applying a first-order linearization to the nodal flux

�(Wi
n+1) yields the Newton-like formulation

�area(Ci)
�tn +

��(W n)
�W

	
�W n+1= −�(Wi

n) (30)

In practice we replace the exact Jacobian of the second-order flux ��(W n)/�W by an
approximate Jacobian matrix J(W n) resulting from the analytical differentiation of the
first-order flux (23)

P(W n)�W n+1=
�area(Ci)

�tn +J(W n)
	

�W n+1= −�(Wi
n) (31)

The resulting Euler implicit time integration scheme is in fact a modified Newton (see Fezoui
and Stoufflet [22] for more details). As a consequence, one cannot ensure that this formulation
will yield a quadratically converging method for time steps tending to infinity. The matrix
P(W n) is sparse and has the suitable properties (diagonal dominance in the scalar case)
allowing the use of a relaxation procedure (Jacobi or Gauss–Seidel) in order to solve the linear
system of Equation (30). Moreover, an efficient way to get second-order accurate steady
solutions while keeping the interesting properties of the first-order upwind matrix is to use the
second-order elementary convective fluxes on the right-hand side of Equation (30). The above
implicit time integration technique is well suited to steady flow calculations; for unsteady flow
computations, this first-order time accurate scheme is generally unacceptably dissipative.

4. DOMAIN DECOMPOSITION ALGORITHM FOR THE EULER EQUATIONS

In this section we adapt the domain decomposition algorithm proposed in Section 2 to the
numerical solution of the Euler equations in the context of the spatial discretization framework
described in Section 3. First, we briefly describe the basic parallelization strategy adopted in
the original flow solver. Then, we introduce interface unknowns in terms of normal fluxes. The
latter are first used to define a modified formulation of the global implicit system (30)
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permitting us to distinguish purely interior unknowns from interface ones. Finally, we apply a
substructuring technique to this system in order to obtain an interface system whose unknowns
are defined in terms of normal fluxes.

4.1. Parallelization strategy

The parallelization strategy adopted for the single grid flow solver combines domain partition-
ing techniques and a message-passing programming model. This strategy has been already
successfully applied in the single grid case in tqo dimensions [31] as well as in three dimensions
[32]. The underlying mesh is assumed to be partitioned into several submeshes, each defining
a subdomain. Basically the same ‘old’ serial code is executed within every subdomain.
Applying this parallelization strategy to the previously described flow solver results in
modifications occuring in the main time stepping loop and in the linear solver (which is chosen
to be Jacobi in the parallel case) in order to take into account several assembly phases of the
subdomain results. The assembly of the subdomain results can be implemented in one or
several separated modules and optimized for a given machine. This approach enforces data
locality, and therefore is suitable for all parallel hardware architectures.

For the partitioning of the unstructured mesh, two basic strategies can be considered. The
first one is based on the introduction of an overlapping region at subdomain interfaces and is
well suited for the mixed finite volume/element formulation considered herein. However, mesh
partitions with overlapping have a main drawback: they incur redundant floating-point
operations. The second possible strategy is based on non-overlapping mesh partitions and
incur no more redundant floating-point operations. While updated nodal values are exchanged
between the subdomains in overlapping mesh partitions, partially gathered quantities are
exchanged between subdomains in non-overlapping ones. It has been our experience that
both the programming effort and the performances are maximized when considering non-
overlapping mesh partitions [32]. Here, according to the domain decomposition algorithm
formulated in Section 2, it is interesting to consider mesh partitions involving a one-triangle
wide overlapping region that is shared by neighbouring subdomains. As a matter of fact, it is
easily seen that within this setting, the interface between two neighbouring subdomains is a
non-overlapping one from the viewpoint of the dual discretization of � in terms of control
surfaces; if �1 and �2 are neighbours then

�=�1��2= �
C 1k

��1, C 2k
��2

�C1k
��C2k

4.2. Domain decomposition algorithm

In order to be able to construct an interface system of the form (18), we need to consider a
preliminary step which consists in the introduction of a redundant variable at the interface
between two control surfaces (see Figure 3), following a strategy adopted by Clerc [19]. Our
approach is, however, different from the one described in Reference [19] in the nature of this
redundant variable since, as detailed below, the latter is defined here as the normal flux
between two control surfaces belonging to different subdomains. To simplify the presentation
we consider the case of a decomposition of � in two subdomains. Let [si, sj ] be an edge such

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 625–656



DOMAIN DECOMPOSITION FOR THE EULER EQUATIONS 641

Figure 3. Definition of a redundant variable at an interface �=�1��2.

that Ci (associated with si) and Cj (associated with sj) belong to two neighbouring subdomains.
An additive Schwarz formulation is obtained by setting the following interface conditions,
which are taken into account in the integral formulation (20) locally in each subdomain:

A�� ij
−(W� n)Wi

(k+1)=A�� ij
−(W� n)Wj

(k) and A�� ij
+(W� n)Wj

(k+1)=A�� ij
+(W� n)Wi

(k) (32)

where W� n is the mean value of Roe [28] and where we have noted that A�� ij
�(W� n)=

AR
�(Wi, Wj, �� ij). The above conditions are expressing the continuity of normal fluxes at the

subdomain interface �=�1��2. In the sequel, we simply write Wi instead of Wi
(k+1). We

introduce an auxiliary variable, denoted by W *, such that

(A�� ij
−(W� n)Wj)�sj

= (A�� ij
−(W� n)W*)�sij

and (A�� ij
+(W� n)Wi)�si

= (A�� ij
+(W� n)W*)�sij

where sij= (si+sj)/2 and we define

�= �A�� ij
(W� n)�W*=A�� ij

+(W� n)Wi−A�� ij
+(W� n)Wj (33)

the associated new unknown of the problem. We can write

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 625–656



V. DOLEAN AND S. LANTERI642

�= (T(W� n)��(W� n)�T−1(W� n))W* � W*= (T(W� n)��(W� n)�−1T−1(W� n))�

where �(W� n) is the diagonal matrix whose components are the eigenvalues of A�� ij
(W� n) and

T(W� n) is the matrix whose columns are the associated left eigenvectors. The positive and
negative parts of this flux are given by

�� =A�� ij
�(W� n)W*= (T(W� n)��(W� n)T−1(W� n))W*

= (T(W� n)��(W� n)��−1(W� n)�T−1(W� n))� (34)

that we write in condensed form as �� =P�(W� n)�. On the other hand, the elementary fluxes
associated with the control surfaces Ci and Cj can be expressed in terms of the auxiliary flux
� as

�
�
�
�
�

�i(Wi, W*, �� ij)= (A�� ij
(Wi

n)−A�� ij
−(W� n))Wi+A�� ij

−(W� n)W*
= (A�� ij

(Wi
n)−A�� ij

−(W� n))Wi+P−(W� n)�
�j(W*, Wj, �� ij)= − (A�� ij

(Wj
n)−A�� ij

+(W� n))Wj+A�� ij
+(W� n)W*

= (A�� ij
(Wj

n)−A�� ij
−(W� n))Wj+P+(W� n)�

(35)

Taking into account Equations (33) and (35), we can construct an implicit linear system that
distingishes purely interior unknowns (state vectors) from interface ones (normal fluxes)

�
�
�
�
�

M1 0 M12

0 M2 M21

F1 F2 Id

�
�
�
�
�

�
�
�
�
�

W1

W2

�

�
�
�
�
�

=

�
�
�
�
�

b1

b2

0

�
�
�
�
�

(36)

where M1 (respectively M2) is the matix that couples the unknowns associated with vertices
internal to �1 (respectively �2), whereas F1, F2, M12 and M21 are coupling matrices between
internal and interface unknowns. These various matrix terms are detailed in Dolean and
Lanteri [33]. Now, the internal unknowns can be eliminated in favour of the interface ones to
yield the following interface system:

S�� [Id− (F1M1
−1M12+F2M2

−1M21)]�=g� − [F1M1
−1b1+F2M2

−1b2] (37)

As usual in this context, once this system has been solved for �, we obtain the values of the
purely internal unknowns by performing independent (i.e. parallel) local solves:

W1=M1
−1(b1−M12�) and W2=M2

−1(b2−M21�) (38)

A simple algorithm for solving system (17) is given by the following Richardson-type
iteration:
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Algorithm 1. Richardson-type iteration for sol�ing the interface system S�=g.


 Initialization: �=�°

 Computation of g=g1+g2 (including communication steps to assemble local

contributions):
gi=Fixi, where xi is obtained through the local resolution: Mixi=bi


 Main parallel loop: k=0, . . . , K
– Subdomain �1: y1=M12�k and �1=F1�1, where �1 is obtained through the local

solution: M1�1=y1

– Subdomain �2: y2=M21�k and �2=F2�2, where �2 is obtained through the local
solution: M2�2=y2

– Assembly process (including communication steps): �k+1=�1+�2+g

 If ���k+1−�k���� then exit main loop

5. SOLUTION STRATEGY FOR THE LOCAL PROBLEMS

The domain decomposition algorithm proposed in Section 4 calls for independent (parallel)
local solves in each subdomain. Here we are interested in solving the corresponding linear
systems iteratively, the main reasons being that, on one hand direct solvers are characterized
by high memory and CPU requirements and, on the other hand, we would like to study (at
least experimentally) the influence of approximate local solutions on the convergence of the
overall domain decomposed flow solver. In this study, a linear multigrid strategy applied at the
subdomain level has been adopted for the local solutions. The smoother is a pointwise
Gauss–Seidel method. The method is described in detail in Lallemand et al. [23]. Its main
features are the following:


 Grid coarsening by agglomeration. The coarsening strategy is based on the use of macro
elements (macro control surfaces) which form the coarse discretizations of the computa-
tional domain. Starting from a fine unstructured triangulation, one wants to generate a
hierarchy of coarse levels; this can be achieved using a ‘greedy’-type coarsening algorithm,
which assembles neighbouring control volumes of the finest grid to build the macro
elements of the coarser level.


 Coarse grid approximation for con�ecti�e terms. The convective fluxes are integrated
between two control volumes of the finest mesh; they are computed in the same way on a
coarse level, between two macro elements. However, on the coarse grids this computation
is limited to first-order accuracy because nodal gradients cannot be evaluated as they are on
a fine mesh; this is really not a problem here as the multigrid method is used to accelerate
the solution of a linear system whose Jacobian matrix is based on the linearization of a
first-order convective flux.


 Inter-grid transfer operators. The solution restriction operator is constructed as a weighted
approximation of fine grid components while the right-hand side restriction operator is
obtained by a summation of fine grid components. Finally, the prolongation operator is a
trivial injection of coarse grid components.
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6. NUMERICAL RESULTS

6.1. Test case definition

The test case under consideration is given by the flow around an NACA0012 airfoil. Three
unstructured triangular meshes have been used whose characteristics are given in Table I (see
Figure 4 for a partial view of mesh N1). Meshes N2 and N3 have been obtained by uniform
division of mesh N1. The following situations have been considered:

S1
The subsonic flow at a freestream Mach number equal to 0.3 and an angle of attack of 0°. In
this case, the extension to second-order accuracy in space does not make use of a limiter. The
time step is obtained using constant values of the CFL number. The value CFL=1000 has

Table I. Characteristics of the meshes around the NACA0012 airfoil.

c Vertices c Triangles c EdgesMesh

N1 3114 6056 9170
12 284 24 224 36 508N2

N3 96 89648 792 145 688

Figure 4. Unstructured triangular mesh around the NACA0012 airfoil.
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been used for the steady flow computation; however, as will be seen in the sequel, we have also
investigated the influence of the value of the CFL number on the convergence of the domain
decomposition solver.

S2
The transonic flow at a freestream Mach number equal to 0.85 and an angle of attack of 0°.
In this case, the time step is obtained using the law CFL=5×kt, where kt denotes the time
iteration. The Van Albada limiter is used in the MUSCL technique (see Fezoui and Dervieux
[29] for more details on this limiter).

6.2. Computing platforms and con�entions

Numerical experiments have been performed on a cluster of 12 Pentium Pro 200 MHz
computers (running the LINUX system) interconnected via two 100 Mbit/s FastEthernet
switches. The MPI implementation is MPICH. The code is written in FORTRAN 77 and the
GNU G77 compiler has been used with maximal optimization options.

Performance results are given for 64 bit arithmetic computations. In the following tables, Np

is the number of processes for the parallel execution, Ng is the total number of levels in the
multigrid hierarchy (fine mesh included), Nc denotes the number of multigrid cycles used for
each linear system solution; ‘Elapsed’ denotes the total elapsed execution time and ‘CPU’
denotes the total CPU time (taken as the maximum value over the local measures); ‘% CPU’
denotes the ratio of ‘CPU’ to ‘Elapsed’, i.e. this ratio gives an idea of the CPU utilization. This
ratio is our principal measure of parallel efficiency. The difference between ‘Elapsed’ and
‘CPU’ basically yields the sum of the communication and idle times, the latter being related to
computational load unbalance. The parallel speedup S(Np) is always calculated using the
elapsed execution times.

6.3. Interface system sol�ers

In order to solve the linear system S�=g (see Equation (37)) we have considered the
following three strategies:


 a simple Richardson-type iteration (see algorithm 1);

 a full GMRES iteration [26];

 a left preconditioned full GMRES iteration based on a simple algebraic polynomial

preconditioner briefly described below. We mention that the objective here is not to devise
an appropriate preconditioner for the interface system but simply to have a preliminary
evaluation of the role of a preconditioner in the present context.

The expression of the interface matrix of Equation (37) can be written as

S=Id− (F1M1
−1M12+F2M2

−1M21)=Id−A (39)

then the construction of the preconditioner starts from the fact that matrix A results from the
discretization of a contractant operator [21], therefore, we have that
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(Id−A)−1=Id+A+A2+ · · · (40)

An approximate inverse and thus a preconditioner for S is given by

S �=Id+A (41)

The preconditioned form of (37) writes as

S �S�=S �g � (Id−A2)�=g � (42)

Clearly the above preconditioner is not computationally cheap since it requires one
additional matrix–vector product using matrix A within each GMRES iteration. Therefore, its
application will hardly result in a reduction in the execution time; hence, we will mainly assess
here the effect of this preconditioner on the required number of GMRES iterations.

6.4. Solution of the first linear system

The following series of numerical experiments concentrate on the solution of the linear system
resulting from the first implicit time step, starting from a uniform flow. In this subsection we
only consider the subsonic flow test case S1. If not explicitly stated otherwise, the linear
thresholds for the local (	l) and the interface (	i) system solves are given by 	l=	i=10−10. We
begin with numerical experiments using the value CFL=20. Table II compares the effective
number of iterations for the convergence of the interface system (37) for each mesh of Table

Table II. Convergence of the first linear system (CFL=20). Subsonic flow test
case.

N3Np N1 N2

Jacobi (global system) 358 4532 322

31 33 322Richardson
3432314
368 38 38

12 — — 38
24 — — 38

GMRES 2 21 23 24
4 242423

29 27 258
— 2812 —

28— —24

132 1211Preconditioned GMRES
4 12 12 13

138 15 14
— 1412 —

— — 1424
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I and for various decompositions. Figure 5(left) visualizes the convergence when using the full
GMRES iteration and for Np=8. Timings for mesh N3 and Np=12 are given in Table III.
Several comments can be made


 The convergence of a domain decomposition algorithm is generally assessed with regards to
two factors: the number of degrees of freedom, i.e. the characteristic dimension h of the
underlying mesh, and the number of subdomains, i.e. the characteristic dimension H�1/Np

of the domain decomposition (each subdomain being viewed as a macro-element). From the
results of Table II, it seems that the convergence of the proposed domain decomposition
algorithm is weakly sensitive to both characteristic dimensions, at least for the problem
stiffness corresponding to the value CFL=20.


 Following the previous comment, one might legitimately question the influence of the
problem stiffness on the convergence of the proposed domain decomposition solver. In the
present context, this can be assessed by increasing the CFL number (note that the limit

Figure 5. Subsonic flow test case: convergence of the first linear system. Solution of the interface system:
full GMRES iteration (Np=8).

Table III. Timings for the solution of the first linear system (CFL=20).
Subsonic flow test case: mesh N3.

CPU (s) Elapsed (s) % CPUMethod Np

656112 94.0Jacobi (global system)
1058 1074Richardson 98.512

GMRES 98.384683212
98.186284612Preconditioned GMRES
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should be given by the maximum value that allows a correct calculation of the steady flow,
i.e. without incurring negative values of the density or the pressure). Figure 6 compares the
convergence of the interface system solution for several values of the CFL number using
mesh N3 and for Np=8, while Figure 5(right) visualizes the convergence for each mesh of
Table I using the value CFL=1000 and for Np=8; in this case, the number of iterations
increases from 56 (mesh N1) to 73 (mesh N3). On the other hand, Figure 7(left) visualizes
the influence of the decompositions of mesh N3 for CFL=1000. The dependence of the
convergence on the parameter H is made clearer on this last figure: whereas the number of
iterations increased from 24 (Np=2) to 28 (Np=24) in the case CFL=20 (see Table II),
it is increasing from 57 (Np=4) to 98 (Np=24) for CFL=1000. The influence of the
simple algebraic preconditioning adopted here is depicted in Figure 7(right): the number of
iterations is now increasing from 30 (Np=4) to 52 (Np=24). The main effect of this
preconditioner is to reduce the number of iterations by a factor close to 2 (1.88 for
Np=24). As expected, since the application of the preconditioner basically requires one
additional matrix–vector with the original matrix, the gain in the number of iterations does
not translate into a gain in execution times;


 It is clear that highly accurate solutions of the local systems result in computational costs
that are prohibitively high. Table III shows that in the best case, the domain decomposition
approach is about 13 times more expensive than the global solution strategy based on the
simple Jacobi solver. From this table it is also seen that the domain decomposition solver
demonstrates higher parallel efficiencies as illustrated by the values of the ‘%CPU’ measure;


 There are at least two strategies that can be considered for reducing the overall cost of the
domain decomposition solver. The first one consists in adopting a more efficient local

Figure 6. Subsonic flow test case: comvergence of the first linear system (mesh N3). Solution of the
interface system: full GMRES iteration (Np=8). Influence of the CFL number.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 625–656



DOMAIN DECOMPOSITION FOR THE EULER EQUATIONS 649

Figure 7. Subsonic flow test case: comvergence of the first linear system. Solution of the interface system
(CFL=1000). Influence of the number of subdomains (mesh N3).

solver. Here this has been achieved by using the multigrid acceleration described in
Section 5: a pointwise Gauss–Seidel method has been selected as the smoother in the
context of a V-cycle with �1=�2=2 and using three coarse grid levels (i.e. Ng=4).
Table IV compares the single grid (SG) and the multigrid (MG) local iterative solvers
for mesh N3 and Np=8. Second, one may ask if it is really necessary to solve accu-
rately the subdomain problems. A partial answer is given here in Figure 8, where we
compare the convergence of the full GMRES solver for mesh N3, Np=8 and for two
values of the local linear threshold 	l=10−2 and 	l=10−10. From these figures and the
timings in Table IV we note that inexact local solves are not affecting the convergence
of the GMRES method and result in a notable reduction in the overall cost of the
domain decomposition solver. Of course, the validity of this strategy should be assessed
in details in the context of more challenging situations, such as the calculation of
unsteady flows.

Table IV. Timings for the solution of the first linear system (CFL=20). Subsonic
flow test case: mesh N3. Comparison of local solution strategies.

Interface system Local system Np CPU (s) Elapsed (s) % CPU

160115758 98.3SG/	l=10−10GMRES
97.1MG/	l=10−10 8 496 511
96.51421378MG/	l=10−2
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Figure 8. Subsonic flow test case: comvergence of the first linear system. Solution of the interface system:
full GMRES iteration (Np=8). Influence of the accuracy of subdomain solutions (CFL=20, mesh N3).

6.5. Full steady flow calculations

6.5.1. Subsonic flow test case. Steady isoMach lines for this test case are visualized in Figure
10. The results presented below are all characterized by the following points:


 calculations are performed using mesh N3;

 the CFL number is set to a constant value of 1000;

 the calculation starts from a uniform flow;

 the local systems induced by the domain decomposition solver are never solved with a high

accuracy.

One objective of this section is to verify that the last of the above options does not influence
the convergence to the steady state compared with the reference convergence of the global
implicit approach (see Section 3.4), where the linear system (31) is approximately solved using
Jacobi relaxations. Figure 9 visualizes the non-linear convergence in terms of the normalized
energy residual for the following situations:


 the global solution strategy where, at each time step, the linear system (31) is solved using
Jacobi relaxations with a linear threshold fixed to 	g=10−1;


 the proposed DDM strategy where, at each time step, the interface system (37) is solved
using full GMRES iterations (without preconditioning) with a linear threshold fixed to
	i=10−1; moreover, the local linear systems are solved using either one V-cycle using �1=4
pre-smoothing and �2=4 post-smoothing steps, or four V-cycles using �1=2 pre-
smoothing and �2=2 post-smoothing steps (in both cases the smoother is a pointwise
Gauss–Seidel method) using three coarse grid levels (i.e. Ng=4).
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Figure 9. Non-linear convergence (CFL=1000, mesh N3, Np=8). Global solution strategy (Jacobi,
	g=10−1) versus DDM strategy (full GMRES, 	i=10−1).

Effective number of time steps to convergence (initial normalized energy residual reduced by
a factor 106) as well as execution times are given in Table V. These results call for several
comments


 For this particular steady flow test case, the influence of the local solution strategy on the
non-linear convergence is rather weak. The reference result is given by the convergence of
the global solution strategy based on the Jacobi relaxation method (98 iterations indepen-
dently of the number of subdomains; for information, increasing the linear threshold from
	g=10−1 to 	g=10−2 did not result in the reduction of the number of pseudo-time steps
to reach the steady state). In comparison, the DDM solver based on the one V-cycle(4, 4)
local solution strategy always yields lower numbers of pseudo-time steps with a slight
degradation when increasing the number of subdomains.


 Replacing exact subdomain solutions by approximate solutions, for instance, using one
V-cycle(4, 4), makes the domain decomposition solver competitive with the global solution
strategy. Indeed, we note a 18% reduction of the total execution time for Np=12 between
the global solution strategy and the DDM one. As expected, the DDM solver demonstrates
higher parallel efficiencies due to reduced communication overheads.

6.5.2. Transonic flow test case. Steady isoMach lines for this test case are visualized on Figure
10. Here, calculations are stille performed using mesh N3 by the following points; however,
this time the CFL number is varying according to the law CFL=5×kt, where kt denotes the
time iteration. Figure 11 visualizes the non-linear convergence in terms of the normalized
energy residual for the following situations:


 the global solution strategy where, at each time step, the linear system (31) is solved using
Jacobi relaxations with a linear threshold fixed to 	g=10−1 and 	g=10−2;
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Table V. Subsonic flow test case: timings for the steady state solution. Global
solution strategy (Jacobi, 	g=10−1) versus DDM strategy (full GMRES,

	i=10−1).

Np c it CPU (s) Elapsed (s)Method % CPU

4 98 2914 2995Jacobi (global system) 97.2
8 98 1992 2252 88.5

12 98 1071 1207 88.9
8 102 3870GMRES/4 V-cycle(2, 2) 4144 93.4
4GMRES/1 V-cycle(4, 4) 93 2686 2748 97.8
8 94 1728 1802 95.9

12 96 911 982 92.7


 the proposed DDM strategy where, at each time step, the interface system (37) is solved
using full GMRES iterations (without preconditioning) with a linear threshold fixed to
	i=10−1 or 	i=10−2; moreover, the local linear systems are solved using one V-cycle using
�1=4 pre-smoothing and �2=4 post-smoothing steps (the smoother is a pointwise Gauss–
Seidel method) using three coarse grid levels (i.e. Ng=4).

Effective number of time steps to convergence (initial normalized energy residual reduced by
a factor 106), as well as execution times, is given in Table VI. These results call for several
comments


 It is clear that setting the linear threshold to 	g=10−1 in the global solution strategy is not
sufficient to guarantee a correct convergence to steady state. As a matter of fact, the desired
level of reduction in the energy residual has not been obtained after 200 pseudo-time steps
(this also explains the lower value of the corresponding execution time in Table VI).
Consequently, it has been necessary to set the linear threshold to the value 	g=10−2.


 On the other hand, switching from 	i=10−1 to 	i=10−2 in the DDM solution strategy did
not improve the convergence to steady state. The required number of pseudo-time steps for
	i=10−1 is even lower than what is obtained by setting 	g=10−2 in the global solution
strategy. This suggests that in the latter case, switching to 	g=10−3 would have certainly
resulted in a further reduction of the required number of pseudo-time steps; however, at the
expense of notably higher execution times.


 By comparing the total execution time of the global solution strategy based on 	g=10−2

with that of the DDM solver based on 	i=10−1 we conclude that the latter is about three
times faster than the former.

7. CONCLUSION AND FUTURE WORKS

In this paper, we have reported on our recent efforts on the design of a non-overlapping
domain decomposition algorithm for the solution of two-dimensional compressible inviscid
flows. The resulting algorithm has been applied to the computation of a subsonic and a
transonic steady flow around an NACA0012 airfoil. An original aspect of our study consists
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Figure 10. Steady Mach lines for the subsonic (top) and the transonic (bottom) flows.

in the iterative solution of local problems using a multigrid by agglomeration technique. In
particular, we have investigated numerically the effect of an approximate solution of local
problems on the overall efficiency of the domain decomposition solver. For steady (Euler) flow
computations, such a strategy is mandatory to make the domain decomposition solver
competitive with classical (global) solution techniques. From this point of view, the proposed
domain decomposition solver can also be viewed as a particular form of an additive multigrid
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Figure 11. Non-linear convergence (CFL=1000, mesh N3, Np=8). Global solution strategy (Jacobi,
	g=10−2). DDM strategy (full GMRES, 	i=10−1 and 	i=10−2).

Table VI. Transonic flow test case: timings for the steady state solution. Global solution
strategy (Jacobi, 	g=10−1 and 	g=10−2). DDM strategy (full GMRES, 	i=10−1 and

	i=10−2).

Elapsed (s)Method % CPUNp c it CPU (s)

Jacobi (global system), 	g=10−1 8 200 1825 2017 90.5
5095Jacobi (global system), 	g=10−2 8 88.7149 4524

GMRES/1 V-cycle(4, 4), 	i=10−1 96.017008 1631127
28301268 95.92951GMRES/1 V-cycle(4, 4), 	i=10−2

in which multigrid acceleration is applied on a subdomain basis, these local calculations being
coordinated by an appropriate DDM solver for the interface unknowns. The successful
application of this strategy is clearly illustrated in Figure 11 and Table VI.

Ongoing efforts and future works concern the following aspects:


 convergence analysis of the additive Schwarz algorithm. Our approach to the evaluation of
the convergence rate of the additive Schwarz algorithm (15) relies on a Fourier analysis of
the linearized two-dimensional Euler equations in the context of a stripwise decomposition
of a rectangular domain. Similar approaches have been adopted in References [16,18,34];


 construction of an appropriate preconditioner for the interface system (37). It is interesting
to note that the algebraic preconditioner (41) is somewhat of a global nature since it
involves the direct application of the matrix A of Equation (39). Other popular precondi-
tioning strategies such as the so-called Neumann–Neumann algorithm (see for instance
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Reference [11] for a recent contribution concerning the application of this preconditioner to
an advection–diffusion problem) are based on local approximations of the inverse of the
interface operator S. As a consequence, it is often necessary to add a coarse (global) space
component to the basic preconditioner in order to insure the scalability of the domain
decomposition solver. Here, it is not clear that such a coarse space has to be introduced in
the definition of the preconditioner (41). On the other hand, as noticed in the Results
section, a crude application of this polynomial preconditioner is not efficient. One possible
strategy would consist in using an approximate calculation of A in the application of S �
using the multigrid by agglomeration method. Note that this is actually done when
applying S to a vector; then, the idea would be to used different approximations in the
application of S and S � in order to decrease the cost of application of the preconditioner;


 extension of the proposed DDM algorithm to the solution of the Navier–Stokes equations
for compressible flows. In that case, the formulation of a non-overlapping domain
decomposition algorithm requires the definition of combined convective/diffusive flux
interface conditions[20]. The main difficulty that we face is the implicit treatment of such
interface conditions in the context of the exisiting flow solver which is based on a mixed
finite volume /finite element formulation (upwind schemes for the discretization of convec-
tive fluxes/Galerkin approximation of the diffusive fluxes).
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